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Collective behavior of asperities in dry friction at small velocities

František Slanina*
Institute of Physics, Academy of Sciences of the Czech Republic Na Slovance 2, CZ-18040 Praha, Czech Republic

and Center for Theoretical Study Jilska´ 1, CZ-11000 Praha, Czech Republic
~Received 29 May 1998!

We investigate a simple model of dry friction based on extremal dynamics of asperities. At small velocities,
correlations develop between the asperities, whose range becomes infinite in the limit of infinitely slow
driving, where the system is self-organized critical. This collective phenomenon leads to effective aging of the
asperities and results in velocity dependence of the friction force in the formF;12exp(21/v).
@S1063-651X~99!06804-X#

PACS number~s!: 05.65.1b, 46.55.1d
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I. INTRODUCTION

Phenomena connected with mechanical properties
complex systems have been the subject of intensive stud
the last decade. Generally speaking, the difficulty stems f
the fact that both the macroscopic scale and mesosc
scale are important. For example, the contact area of
grains of sand is a mesoscopic object, but its properties re
in macroscopic behavior of a sand heap. Among the wh
family of such problems, the dry friction emerged in rece
years as a hot subject. Besides the intrinsic interest in
dynamics of contact interfaces sliding on top of each oth
there are various systems studied recently, in which frict
forces are dominant interactions determining the behav
As examples, we may note two notoriously known pheno
ena: sand heaps and earthquakes. Equilibrium stress dist
tion in heaps of granular materials exhibits complicated
calized structures@1,2#. The dynamics of tectonic plate
gives rise to the power-law distribution of earthquakes, f
mulated in the Gutenberg-Richter law@3,4#. A one-
dimensional counterpart of friction is, e.g., the dislocati
movement, which is responsible for the plasticity of meta

At least three regimes of friction may be distinguishe
First, dry friction corresponds to tangential force acting
the contact of two macroscopic solid bodies. The slot
tween the bodies is empty. The friction emerges as a resu
the rheological properties of the sliding bodies both at
macroscopic and mesoscopic scale. Second, the lubric
friction differs in the fact that the slot between bodies
filled with a liquid and the mechanical properties of the m
soscopic portions of the lubricant are responsible for fricti
Third, friction of a single microscopic tip on a surface m
be measured, which explores the microscopic propertie
the surface@5#. Here we concentrate on the first possibilit
dry friction.

Thorough experiments concerning sliding bodies w
performed as early as the 18th century and led to the fam
Amontons-Coulomb laws: the friction force is proportion
to load and independent of the apparent contact area;
nonzero velocities, the friction force is independent of velo
ity ~dynamical friction!, while at zero velocity, the friction
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force is larger~static friction!. These old results on the dr
friction were reinvestigated experimentally relatively r
cently @6,7#. It was found that dynamical friction force is no
constant, but increases continuously when the velocity is
creased.

From the theoretical point of view, the microscopic inte
pretation of the Amontons-Coulomb law was provided
Bowden and Tabor@8#, and alternatively by Greenwood an
Williamson @9#. In both approaches, the explanation is bas
on the picture of the set of mesoscopic contacts~asperities!,
scattered on the surface of the sliding bodies@10–14#. The
typical size of the asperities is constant, while their num
is proportional to normal load; hence the explanation of
Amontons-Coulomb law.

This picture is the basis of many current models of d
friction @7#, especially the elastoplastic model developed
Caroli, Noziéres, and Velicky´ @10,11#. The asperities are
considered as multistable traps, which dissipate energy
to hysteresis. In the approximation of independent tra
even the dynamics of a single asperity is able to describe
friction process.

However, many features are not well understood, e.g.,
velocity dependence of the friction force found in expe
ments@6,15#. It is explained either as a consequence of
plasticity of the asperities, which is considered as a therm
activated process@6# ~this phenomenon is called aging of th
asperities! or purely geometrically, based on the self-affin
shape of the surfaces@12#. Within the approach based on th
plasticity, the logarithmic dependence of the age of the
perity on time is supposed on the basis of experimental d
which suggest logarithmic velocity dependence of the fr
tion force. On the other hand, the geometrical approach g
friction force proportional tov21 for large velocities, while
the behavior for small velocities depends on the fractal
ometry of the surface.

In the description of the process of friction two levels m
be distinguished. On the global level, the averaged effec
asperities can be successfully described using the elasto
tic model @10,11#. This approach is effectively a single-sit
one. Only one asperity is changing its state and the effec
all other asperities is described by the effective surround
medium. The spatiotemporal correlations are considere
be of very short range, and the mutually sliding surfac
behave in a uniform way.
3947 ©1999 The American Physical Society
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3948 PRE 59FRANTIŠEK SLANINA
On the other hand, the local, short time level of descr
tion must take into account processes that happen at se
~or many! asperities simultaneously, or within a very sho
period of time, so that they cannot be considered as un
related. Several approaches in this direction were alre
proposed, based on geometrical considerations@12,13#, on
Frenkel-Kontorova@16#, Burridge-Knopoff and train models
@17,18#, or on an extremal dynamics model with elastic i
teractions@14#.

The extremal dynamics~ED! models are very appealing
because they may grasp the ‘‘skeleton’’ of the problem,
spite their simplicity and rudimentary nature. Generally, E
is based on the assumption that only one site is evolv
during one time step, namely the site which has the ma
mum ~or minimum: it depends on the model in question! of
the dynamical variable determining the state of the syst
However, the price to pay is that the time scale fixed by
frequency of the updates of single sites is not directly rela
to the real time measured in an experiment.

Extremal dynamics models were successfully used
modeling various systems, such as invasion percolation,
logical evolution @19#, earthquakes@20#, or dislocation
movement@21,22#. The model we propose here is based
the ideas of ED models, adapted to the fact that in friction
are interested in macroscopic movement with nonzero ve
ity, while most ED models are appropriate to the case
infinitely slow movement.

Briefly, the evolution of our model proceeds at the mo
susceptible asperity, namely the asperity that bears m
mum stress. A small mechanical perturbation, such as
release of stress at a single site, may result in a burs
activity of large spatiotemporal extent. Following the term
nology used in the theories of self-organized criticality@19#,
we will call such spatiotemporal areas of activity avalanch
The correlations present in the model will be describ
through the statistical properties of the avalanches.

From time to time, the ED of asperities is interrupted by
macroscopic ‘‘slip’’ of the body as a whole, in which a
asperities are completely renewed. By a combination of
ED evolution with such macroscopic slips, we introdu
non-zero macroscopic sliding velocity into the model.

The rest of the article is organized as follows. In Sec
the model is defined and the interpretation of the model
rameters is given; in Sec. III the presence of self-organi
criticality ~SOC! is investigated in the case of zero macr
scopic velocity, while the effect of nonzero velocity on th
breakdown of SOC as well as the velocity dependence of
friction force are investigated in Sec. IV. Section V summ
rizes the results and draws conclusions from them.

II. MODEL

We propose the following model. There areN point con-
tacts, asperities, each with stressb. The quantityb will be
interpreted as the elastic energy stored in the asperity.
model is one dimensional~the generalization to the realisti
two-dimensional case is straightforward! with periodic
boundary conditions, so the points form a closed ring.
each step, the point with the highest stressbmax is found and
released. The release of the stress means that the po
removed. However, in order to keep the number of poi
-
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constant, a new point is introduced somewhere in the sys
As a zeroth approximation, the location of the new po

may be chosen at random. However, in reality the position
the new contact is determined by the detailed structure of
surfaces of the slider and track. The new contact is es
lished at a place where the surfaces are closest one to
other. So, another numberd is attributed to each point rep
resenting the width of the slot between the surfaces, wai
in the vicinity of the asperity for further updates~the actual
slot directly on the asperity is zero, of course!. The situation
is sketched in Figs. 1~a! and 1~b!. In the update the location
of minimumd is found. Here a new asperity is reintroduce
The values ofb and d of the neighbors of the old and new
sites are also updated. Generally, each site hasK21 neigh-
bors that are affected. For simplicity, we assumeK52, and
update only one neighbor~on the right-hand side!.

Let us allow for very slow motion of the slider as a whol
The energy stored in the released asperity may be transfe
entirely to other asperities, or a part of it may be conver
into kinetic energyE. It may also happen that some of th
kinetic energy is returned back to elastic energy of so
asperities. The redistribution of energy in one update ste
illustrated in Fig. 1~c!.

It is natural to expect that, at higher velocities, the num
of asperities affected by the transfer of the kinetic energy
the elastic one will be larger. We simplify this dependen
by saying that forE,Ethr only the nearest neighbors ar
affected, while forE>Ethr the slider slips macroscopicall
over an average distancexslip . The average duration of th
slip is Tslip and after that time all parametersb andd of all
asperities are newly attributed at random andE is set to 0.
Then, the dynamics starts again. In this process, the kin
energy.Ethr the system had before the slip is dissipate
This makes a difference with the theories of one aspe
dynamics, where the energy is dissipated immediately a
release of a single asperity. In our model we do not desc
the processes that happen during the slip; e.g., we do

FIG. 1. Illustration of the model. A schematic drawing of tw
sliding interfaces in contact is given in~a!; the idealization of the
situation used in our model is depicted in~b!. The elastic energy
stored in the asperity is described by the quantityb; the slot be-
tween the potential asperity and the track isd. In ~c!, the redistri-
bution in one step of extremal dynamics is shown schematicall



im
in

he
s

su

ys
m
o

ity

ng

ge

ps
p

d
fy

de

y

e

d

or

r

le

t
in
s

tic
to
as-
-
gy
e
ich

m-
-

. If

n
to
elf,
If

the
-
-

e of

ity
may
y,
lider
le
the
he

w,
ity

al-

the
rgy
i-
ent
i-
he
ct

at

es,

al

PRE 59 3949COLLECTIVE BEHAVIOR OF ASPERITIES IN DRY . . .
examine the energy dissipated in the course of the slip. S
larly, we do not calculate the physical velocity correspond
to the kinetic energyE during the ED evolution. So, we
isolate only those contributions to the friction force and t
macroscopic slider velocity that originate in the ED proce
interrupted by instantaneous slips.

The average macroscopic velocityDv stemming from the
slips depends on the average time interval between two
sequent slips. We may determine this quantityD t̄ in the time
units of the extremal dynamics process. Its relation to ph
cal time is not straightforward, but we suppose that this a
biguity affects only units, in which we measure time and n
the general dependence of the friction force on veloc
Thus, we write simply

Dv51/D t̄, ~1!

which corresponds to taking the average slip lengthxslip as
the length unit and average time needed to update si
asperity as a time unit. The contributionDv from the ED
process is dominant if the time between slips is much lar
than the duration of the slip,D t̄@Tslip ~i.e., slips are instan-
taneous events! and the real length travelled between sli
during the ED dynamicsxED is much shorter than the sli
length,xED!xslip .

The contributionDF fric to the friction force coming from
this process is then proportional to the energy dissipate
one slip. Because we are using arbitrary units, we identi

DF fric5Ethr . ~2!

Let us now describe the extremal dynamics of the mo
more formally. The model consists ofN sites connected in
ring topology. Each sitei P$1,2, . . . ,N% is connected to its
right neighborr ( i ). The state of the model is described b
the set (E,b1 ,b2 , . . . ,bN ,d1 ,d2 , . . . ,dN) and the function
r ( i ) which describe the connectivity of the sites. At the b
ginning,E50 and bothbi anddi are uniformly distributed in
the interval~0,1!. The updating steps are the following.~i!
Find the maximum stressbmax5maxi(bi) located at sitei max.
Remember its old right neighbori old5r ( i max). ~ii ! Find the
minimum slotdmin at sitei min . ~iii ! Change of connectivity:
The sitei max is removed by cutting its links to the left an
right nearest neighbors and is reinserted betweeni min and the
site next to it on the ring. It will have a new right neighb
i new5r ( i max)5r ( i min), and then setr ( i min)5 i max. ~iv! Ki-
netic effects: SetE85E1dbmax, bmax8 5(12d)bmax, D1

5(bM2bi old
)u(bM2bi old

), D25(bM2bi new
)u(bM2bi new

).

If E8.D11D2 , we setE5E82D12D2 , bi old
8 5bi old

1D1 ,

bi new
8 5bi new

1D2 . If not, we set E50, bi old
8 5bi old

1E8/2,bi new
8 5bi new

1E8/2. ~v! Stress redistribution: Fo

r 1 ,r 2, random numbers distributed uniformly in the triang
0,r 1,r 2,1 we set bi max

5r 1bmax8 , bi old
5bi old

8 1(r 2

2r 1)bmax8 , bi new
5bi new

8 1(12r 2)bmax8 . ~vi! New values of

slotsd are attributed to old and new neighbors as well as
site i max, taking random numbers uniformly distributed
the interval~0,1!. ~vii ! If E>Ethr , slip occurs, which mean
that E is set to 0 andbi anddi distributed uniformly in the
interval ~0,1!.
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Rule ~iv! concerning the kinetic effects means that elas
energy dbmax is transferred from the removed asperity
kinetic energy and the rest is left for the newly inserted
perity. The quantitiesD1 andD2 are absorbed by the neigh
bors, but only if they do not exceed the kinetic ener
~which should be positive!. If they do exceed it, each of th
neighbors receives exactly half of the kinetic energy, wh
is thus totally absorbed.

The kinetic effects and the slip involve several para
eters. First, the parameterd describes how much of the elas
tic energy tends to be converted into the kinetic energy
d50, the kinetic effects are turned off.

The parameterbM is the limit up to which an asperity ca
absorb a portion of kinetic energy and convert it back
elastic energy. It should be the property of the surface its
without any resort to the load and velocity of the slider.
d50, the parameterbM does not enter the model.

The slip is determined by the parameterEthr . In a more
realistic description, it would be necessary to introduce
function R(E), which would count the number of sites, in
cluding the extremal sitei max, which are to be updated, pro
vided the kinetic energy has the valueE. Here we take the
simplest formR(E)531(N23)u(E2Ethr). Even this pa-
rameter should be the property of the surface, irrespectiv
the load and velocity.

Finally, we comment on the interpretation of the quant
N, the average number of asperities. We suppose that it
serve as a measure of the external load. ConsequentlN
does not depend on the apparent contact area of the s
and the track. LargerN also means that update of sing
asperity has less impact on the whole system, namely,
transfer of elastic energy to kinetic energy is slower. T
same effect has smallerd, so it is the quantityd/N that will
appear in the velocity dependence of the friction force.

So, in order to conform with the Amontons-Coulomb la
we expect that the surface properties will enter the veloc
dependence of the friction force through the parameterbM
and combinationsEthr /N andd/N. We will see later that it is
exactly the case.

III. INFINITELY SLOW MOVEMENT REGIME

Let us first investigate the case in which no slips are
lowed, which can be expressed by the limit valueEthr5`. In
this case, the macroscopic movement is infinitely slow. If
elastic energy could not be transformed into kinetic ene
E, i.e., if d50, the model would be a slightly more compl
cated version of the Zaitsev model for dislocation movem
@21#, which is known to be self-organized critical. The crit
cality manifested by the power-law distribution of avalanc
sizes is due to infinitely slow driving. It is natural to expe
self-organized criticality also in our model ford50. How-
ever, even ford.0 the condition of infinitely slow driving,
which means technically that only one asperity is updated
a time, is also satisfied and SOC is expected as well.

We simulated systems of sizeN51000. The first quantity
we measured was the probability distribution of the stress
P(b) and maximum stressesPmax(bmax). The functionP(b)
is continuous up to a critical valueb5bc and then suddenly
drops to zero, which is behavior common in SOC extrem
dynamics models. The value ofbc depends ond. The typical
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3950 PRE 59FRANTIŠEK SLANINA
behavior is shown in Fig. 2 ford50.01.
A fingerprint of self-organized criticality is, e.g., the sca

ing behavior of the forwardl-avalanche sizes

Pfwd~s!5s2tg~sul2lcu1/s!. ~3!

The l avalanche starts whenbmax exceeds the valuel and
ends whenbmax drops below the valuel again. The sizes of
the avalanche is the number of update steps from the sta
the end of the avalanche. For numerical reasons it is sim

FIG. 3. Rescaled forward avalanche distribution forN
51000 andd50. The critical threshold islc50.7475 and the scal
ing exponents aret51.28 and 1/s52.6. The number of steps i
108. The corresponding thresholdsl are indicated next to the sym
bols in the legend.

FIG. 2. Distribution of stressesP(b) and maximum stresse
Pmax(bmax) for N51000,d50.01, andbM50.9. The energy thresh
old is infinite @full line for P(b) and dotted forPmax(bmax)# and
Ethr /N50.08 @dashed line for P(b) and dash-dotted for
Pmax(bmax)#. The number of steps is 106.
to
er

to investigate scaling of integrated distribution,Pfwd
. (s)

5*s
`ds̄Pfwd( s̄), from which the exponentst and s can be

determined.
Figures 3 and 4 show the data collapse which confirms

scaling of the form~3!. The best collapse was obtained f
the following values of the parameters:~a! for d50 we have
lc50.7475, t51.28, and 1/s52.6, and~b! for d50.001
andbM50.9 we havelc50.519,t51.27, and 1/s52.6.

There is a minor difference in the exponentt giving the
best fit ford50 andd50.001. However, we believe that thi
difference is within the numerical uncertainty of the resu
and the model belongs to the same universality class i
spective of parameterd.

By qualitative inspection of the quality of the data co
lapse for different choices of the exponents, we estimate
error bars. Thus, we finish with the following critical expo
nents of our model:

t51.2760.02, s50.3860.02. ~4!

The forward avalanche exponentt is greater than in the
one-dimensional~1D! Zaitsev model@21,19#, but close to the
Sneppen interface growth model@23,19#. Another 1D model
to be compared is the charge-density wave~CDW! model of
Olami @24# and the anisotropic interface depinning model
Ref. @22#, which have, however, significantly larger expone
t. The closest universality class seems to be the one of
Sneppen model (t51.26), but the value ofs50.35 in this
class is smaller than in our model.

Whether this difference is due to the finite-size effect
the two models being in a different universality class can
be stated with certainty from our present data. Instead,
would like to stress a structural similarity of the two mode
which may explain the similarity of exponents. Contrary
usual interface growth models@25#, the Sneppen model is
nonlocal one. After a single growth event~deposition of a
single particle!, an unbounded sequence of further steps

FIG. 4. Rescaled forward avalanche distribution forN
51000,d50.001, and bM50.9. The critical threshold islc

50.519 and the scaling exponents aret51.27 and 1/s52.6. The
number of steps is 108. The corresponding thresholdsl are indi-
cated next to the symbols in the legend.
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PRE 59 3951COLLECTIVE BEHAVIOR OF ASPERITIES IN DRY . . .
performed in order to reestablish the single-step propert
the interface. So, the range of interactions fluctuates du
the evolution, according to the actual configuration of t
interface. Similarly, the Zaitsev model, like most of oth
extremal dynamics models, is local in the sense that a
finding an extremal site, its neighbors are also updated, w
the range of neighborhood is fixed. In contrast, our mod
like the Sneppen model, does not have a fixed range o
teractions, but is established by the position of the minim
of the quantityd ~the slot!. We simulated also a version i
which the site, where new asperity is inserted, is chose
random, instead of using the slotd. In this case we observe
mean-field behavior characterized by exponentst51.5,
s50.5.

IV. FRICTION AT NONZERO VELOCITY

In the preceding section we dealt with stationary prop
ties of the model. In order to account for macroscopic mo
ment, transient properties are of interest. First, we investig
the evolution of the kinetic energyE and its approach to the
stationary valueE` , if we forbid the slips, i.e.,Ethr5`. In
Fig. 5 we show the time evolution ofE/N for different val-
ues of the model parametersd, bM, and number of asperitie
N. The most important observation is that the station
valueE` /N depends onbM , while the dependence ond and
N is within the noise level.~We observe that both largeN
and smalld suppress the relative fluctuations of the kine
energy around the stationary value.! The physical signifi-
cance is clear: the static friction force, which is according
Eq. ~2! equal toE` , is proportional toN, which is in turn
proportional to the normal load. Thus, we recover t
Amontons-Coulomb law for static friction.

The approach of the kinetic energy to its stationary va
is exponential, as is demonstrated in Fig. 6. This type
approach is directly reflected in the velocity dependence
the friction force, as we will see below.

FIG. 5. Time evolution of the kinetic energy per asperity. T
parameters are as follows:N51000, d50.01, andbM50.9 ~full
line!, N5104, d50.001, andbM50.9 ~dotted line!, N51000,
d50.001, and bM50.5 ~long dashed line!, and N51000,
d50.001,bM50.9 ~short dashed line!.
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If we set the thresholdEthr,E` , quasiperiodic behavior
is observed: the kinetic energy grows, until it reaches
value of the threshold, and then the system is reinitializ
This regime is illustrated in Fig. 7. If the threshold is close
E` , the slips are less regular, due to fluctuations, but
smaller values of the threshold the slips occur with fix
frequency. The mean number of stepsDt between slips is
determined by the wayE approaches the stationary valu
BecauseEthr is related to the friction force by Eq.~2! and the
mean period of slips to the velocity, according to Eq.~1!, the
velocity dependence of the friction force is measurable in
model. Figure 8 shows the results for variousd andbM . If
we denoteF05E` the static friction force, we observe b
plotting the velocity dependence in semilogarithmic sc
that the following law is well satisfied:

DF fric5F0F12expS 2A
d

DvND G ~5!

FIG. 6. Approach of the kinetic energy to its stationary valu
for N5104, d50.001, andbM50.9. The stationary value is take
asE` /N50.155.

FIG. 7. Time dependence of the kinetic energyE, for N
5103, d50.1, andbM50.9. The slips occur in the moments whe
E drops to 0.
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3952 PRE 59FRANTIŠEK SLANINA
with some constantA characteristic of the model. We hav
found A53.660.3. The deviations from the above depe
dence forDv,d/N are due to time fluctuations ofE, which
lead to less regular slips. However, as we already mentio
the relative fluctuations decrease withN, so we expect the
dependence~5! to hold for all velocities in thermodynami
limit N→`.

For large velocities the friction force decreases asDF fric
;1/Dv. The same velocity dependence was found also us
a different approach@12#.

BecauseF0 was found to be proportional toN, i.e., to the
normal load, the form of Eq.~5! is in conformity with the
Amontons-Coulomb law.

Now we turn to the influence of the macroscopic mov
ment, connected to the slips on the self-organized crit
behavior investigated in the last section. Each slip reinit
izes the values ofb and d and the evolution towards th
critical attractor begins from scratch. This means that
long-range correlations characteristic of the critical state c
not fully develop. The difference can be seen already in
distribution of stresses, Fig. 2. The sharp edge inP(b) ob-
served in the infinitely slow driving is smeared out. The p
sition of the edge determines the critical thresholdlc for the
forward avalanches, so we expect that no scaling of type~3!
will hold, as soon as the macroscopic movement has non
velocity. However, the most direct way to investigate t
breakdown of criticality due to the slips seems to us to be
calculation of the distribution of jump lengths. If in certa
time stept the maximum stress was found at sitei t and in the
next step at sitei t11 , we can compute spatial distance b
tween these sites as follows. Letr t( i ) be the function that
determines the connectivity in timet, namely,r t( i ) is the site
connected toi on the right-hand side. The jump lengths is
defined as follows: starting fromi t and applyingr t we come
to the right neighbor of the extremal site at timet, r t( i t).
Then, applyings2 l times the functionr t11 we must end
at i t11 . So, s is such that i t115r t11(r t11

FIG. 8. Velocity dependence of the friction force, forN5103,
d50.001, bM50.9(1), N5103, d50.001, bM50.5(3), N
5103, d50.01, bM50.9(s), N5500, d50.01, and bM

50.9(n).
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@•••rt11„r t( i t)…•••#), wherer t11 is applieds21 times.
In the self-organized critical state the probability distrib

tion of jump lengths is the power lawPjmp(s)5s2p. For
Ethr5` it is actually observed in our model, as indicated
the inset in Fig. 9. The comparison of the distributions
N5103 andN5104 is shown in order to give an idea of th
magnitude of the finite-size corrections to the power-law
havior.

The situation with nonzero macroscopic velocity,Ethr
,E` , is shown in Fig. 9. WhenEthr decreases, the velocit
increases and the scale on whichPjmp(s) obeys a power law
shrinks. The correlations do not have time enough to deve
on the scale of the whole system, but only at shorter d
tances. So, we may connect the velocity dependence of
friction force to the level of correlations between the aspe
ties, which are present in the system. In contrast to the th
ries where the velocity dependence stems from the aging
single asperity, here the aging is a collective effect. The
corresponds to the range of correlations. For zero velo
the correlation length is infinite and the age is infinite
well.

V. CONCLUSIONS

We presented a model of dry friction based on the c
ception of slider and track interacting through a system
asperities. We proposed an extremal dynamics model in
der to describe the processes during the movement of
slider. We found the decrease of the friction force with i
creasing velocity. For velocities approaching zero, the fr
tion force has finite limit. The origin of the velocity depen
dence is not in a change of properties of a single asperity,
in collective effects, involving many asperities. At zero v
locity, the system is in a highly correlated, self-organiz

FIG. 9. Distribution of jump lengths for N5103, d
50.001, andbM50.9. The full line is the case without slips (Ethr

51`). The dotted lines have slips allowed and the values
Ethr /N are indicated next to the position where the lines reach
right edge of the figure. In the inset, the distribution of jump leng
is given ford50 andN5104 ~full line!, andN5103 ~dotted line!.
Note that the inset makes it clear that the upward bend in the
tribution for Ethr51` is a mere finite-size effect.
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critical state. The values of the exponents are close to
Sneppen interface model; however, it is not clear from
data whether the universality class is the same.

Increasing the velocity gradually destroys the corre
tions. It is possible to view the buildup of the correlations
a collective asperity aging mechanism, as a counterpa
the single asperity aging due to plastic deformation. S
collective aging leads to a different velocity dependence
the friction force than in the models considering single
perity aging and may be thus tested experimentally. A tw
dimensional variant of our 1D model would be necessary
a real comparison. However, generalization to an arbitr
dimension is straightforward.

This observation reveals also the limits of applicability
our model. It is appropriate to situations where the plas
deformation does not dominate. The model can be use
the regime of very small velocities, where the usual logar
mic velocity dependence is inappropriate. It may also
used to describe friction over highly elastic surfaces, l
rubber or some plastics, where the slow aging of single
perities may not be dominant.

However, a simple modification of the model might al
take into account the plastic aging: the stressesb may be
allowed to depend explicitly on the time elapsed since
asperity was created. The specific form of this time dep
dence should be based on physical assumptions not
tained in our model, like the thermally activated mechani
@6#. Thus, the interplay of collective and individual agin
could be investigated. We expect that the nonuniversal fo
of the velocity dependence of the friction force arises fro
such interplay.
od
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There can also be another source of velocity depende
different from the exponential one, which we found in o
work. The function R(E), which gives the number o
changed asperities in one step, determines when the
start and consequently what will be the average velocity
a given friction force. However, we expect that realis
forms of R(E) have a more or less sudden increase a
certain value ofE. We expect that all forms with a suffi
ciently sudden jump will give the same universal behavior
the stepwise form used by us.

As for the geometrical assumptions of the model, they
naturally very crude. The asperities in the model do not
cupy places in a realistic one-dimensional Euclidean spa
but rather on an abstract topological line. Taking into a
count the real geometry of the space would make more c
plicated the rules for finding the place where the new asp
ity is to be inserted. Also, the true elasticity of the mediu
should be taken into account. However, our results show
the velocity dependence of the friction force is governed
the way the self-organized critical state is approached.
believe that this behavior is universal and making the sys
more realistic would not alter the universality class, as lo
as the dimensionality and the extremal-dynamics characte
the model is preserved.
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